DEQ
Packaging discrete items
Computes distributions of packaged items
2026.Jan.14 14:43:20
μ, cv g   % Parameters: mean and coefficient of variation.
Threshold (min), costU g   $ ⁄ g Nominal minimum, unit cost.
Barrier (max), costR g   $ ⁄ bag Maximum, recycle cost (per recycled bag).
Trials, seed     Monte Carlo trials (≤ 200e6), seed.
Level % Probability level of occurrence.
Simul. y-, x-axis bounds Simulation: axes bound in plot.
Plot points Simulation: n. of plot points.
Show values Show graph coordinates.

Computes sums, T (such as in Fig. 1), of numbers of items, n, not below a given threshold, and gives: the (continuous) distribution of T; and the (discrete) distribution of n.

Other suggested data: (μ, cv, thr) = (246.9  2.6 %  2000).

Shows the graphical results: (a) for T, and (b) for n.

Keywords: packaging; random; Monte Carlo; giveaway.

bag Fig. 1
References: Plate: Packaging

• Calibrafruta, L.da

• (Wikipedia) Packaging

• ICMASC’26, International Conference Mathematical Analysis and Applications in Science and Engineering, 21–23 June 2026, Porto (Portugal).

• CISTI'2026, 17–20 June 2026, Santiago de Compostela (Spain).

• Butcher, T., D. Sefcik, L. Warfield, E. Benham, S. Bowers, K. Lippam, 2022, "Checking the Net Contents of Packaged Goods", National Institute of Standards and Technology, Gaithersburg, MD, NIST HB 133-2023, doi: 10.6028/NIST.HB.133-2023, free document.

• Cronin, K., J. Fitzpatrick, D. McCarthy, 2023, "Packaging strategies to counteract weight variability in extruded food products", Journal of Food Engineering, 56:4, 353–360, doi: 10.1016/S0260-8774(02)00161-9.

• Yam, K. L. (ed.), 2009, "Wiley Encyclopedia of Packaging Technology", 3.rd ed., John Wiley & Sons, Inc. (USA), 1353 pp, ISBN 978-0-470-08704-6, accessed 31-Dec-2025.

• 1904-10-12: Bradistilov, Georgi Delchev (†1977-07-18, 72 yrs.).

 
 
Valid HTML 5! IST http://lisweb.vps.tecnico.ulisboa.pt/lab/pack/P.pack.php
Created: 2025-12-31 — Last modified: 2026-01-02