Computes sums, T
(such as in Fig. 1), of numbers of items, n,
not below a given threshold, and gives:
the (continuous) distribution of T; and
the (discrete) distribution of n.
Other suggested data:
(μ, cv, thr) = (246.9 2.6 % 2000).
Shows the graphical results:
(a) for T, and
(b) for n.
Keywords: packaging; random; Monte Carlo;
giveaway. |
 Fig. 1 |
|
• Calibrafruta, L.da
• (Wikipedia) Packaging
• ICMASC’26, International Conference Mathematical Analysis and
Applications in Science and Engineering, 21–23 June 2026,
Porto (Portugal).
• CISTI'2026, 17–20 June 2026,
Santiago de Compostela (Spain).
• Butcher, T., D. Sefcik, L. Warfield,
E. Benham, S. Bowers, K. Lippam, 2022, "Checking the Net Contents
of Packaged Goods", National Institute of Standards and Technology,
Gaithersburg, MD, NIST HB 133-2023, doi: 10.6028/NIST.HB.133-2023,
free document.
• Cronin, K., J. Fitzpatrick, D. McCarthy, 2023,
"Packaging strategies to counteract weight variability in extruded food
products", Journal of Food Engineering, 56:4, 353–360, doi:
10.1016/S0260-8774(02)00161-9.
• Yam, K. L. (ed.), 2009, "Wiley Encyclopedia of Packaging Technology", 3.rd ed.,
John Wiley & Sons, Inc. (USA), 1353 pp, ISBN 978-0-470-08704-6,
accessed 31-Dec-2025.
• 1904-10-12: Bradistilov, Georgi Delchev
(†1977-07-18, 72 yrs.). |